Related Papers in ACL 2020 (2020.07.06)
Recurrent Neural Network
- Generating Informative Conversational Response using Recurrent Knowledge-Interaction and Knowledge-Copy - Xiexiong Lin, Weiyu Jian, Jianshan He, Taifeng Wang and Wei Chu 
- MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning - Jie Lei, Liwei Wang, Yelong Shen, Dong Yu, Tamara Berg and Mohit Bansal 
- Recurrent Chunking Mechanisms for Long-Text Machine Reading Comprehension - Hongyu Gong, Yelong Shen, Dian Yu, Jianshu Chen and Dong Yu 
- Recurrent Neural Network Language Models Always Learn English-Like Relative Clause Attachment - Forrest Davis and Marten van Schijndel 
- Synchronous Double-channel Recurrent Network for Aspect-Opinion Pair Extraction - Shaowei Chen, Jie Liu, Yu Wang, Wenzheng Zhang and Ziming Chi 
Autoencoder
- Autoencoding Pixies: Amortised Variational Inference with Graph Convolutions for Functional Distributional Semantics - Guy Emerson 
- Evidence-Aware Inferential Text Generation with Vector Quantised Variational AutoEncoder - Daya Guo, Duyu Tang, Nan Duan, Jian Yin, Daxin Jiang and Ming Zhou 
- Semi-Supervised Semantic Dependency Parsing Using CRF Autoencoders - Zixia Jia, Youmi Ma, Jiong Cai and Kewei Tu 
- Autoencoding Keyword Correlation Graph for Document Clustering - Billy Chiu, Sunil Kumar Sahu, Derek Thomas, Neha Sengupta and Mohammady Mahdy 
- Crossing Variational Autoencoders for Answer Retrieval - Wenhao Yu, Lingfei Wu, Qingkai Zeng, Shu Tao, Yu Deng and Meng Jiang 
- Interpretable Operational Risk Classification with Semi-Supervised Variational Autoencoder - Fan Zhou, Shengming Zhang and Yi Yang 
- SCAR: Sentence Compression using Autoencoders for Reconstruction - Chanakya Malireddy, Tirth Maniar and Manish Shrivastava 
LSTM
- Inducing Grammar from Long Short-Term Memory Networks by Shapley Decomposition - Yuhui Zhang and Allen Nie 
Sequence
- A Study of Non-autoregressive Model for Sequence Generation - Yi Ren, Jinglin Liu, Xu Tan, Zhou Zhao, Sheng Zhao and Tie-Yan Liu 
- 已读 BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension - Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov and Luke Zettlemoyer 
- Conditional Augmentation for Aspect Term Extraction via Masked Sequence-to-Sequence Generation - Kun Li, Chengbo Chen, Xiaojun Quan, Qing Ling and Yan Song 
- DeSePtion: Dual Sequence Prediction and Adversarial Examples for Improved Fact-Checking - Christopher Hidey, Tuhin Chakrabarty, Tariq Alhindi, Siddharth Varia, Kriste Krstovski, Mona Diab and Smaranda Muresan 
- Estimating the influence of auxiliary tasks for multi-task learning of sequence tagging tasks - Fynn Schröder and Chris Biemann 
- Jointly Masked Sequence-to-Sequence Model for Non-Autoregressive Neural Machine Translation - Junliang Guo, Linli Xu and Enhong Chen 
- Location Attention for Extrapolation to Longer Sequences - Yann Dubois, Gautier Dagan, Dieuwke Hupkes and Elia Bruni 
- NAT: Noise-Aware Training for Robust Neural Sequence Labeling - Marcin Namysl, Sven Behnke and Joachim Köhler 
- SeqVAT: Virtual Adversarial Training for Semi-Supervised Sequence Labeling - Luoxin Chen, Weitong Ruan, Xinyue Liu and Jianhua Lu 
- Structure-Level Knowledge Distillation For Multilingual Sequence Labeling - Xinyu Wang, Yong Jiang, Nguyen Bach, Tao Wang, Fei Huang and Kewei Tu 
- Enriched In-Order Linearization for Faster Sequence-to-Sequence Constituent Parsing - Daniel Fernández-González and Carlos Gómez-Rodríguez 
- Low Resource Sequence Tagging using Sentence Reconstruction - Tal Perl, Sriram Chaudhury and Raja Giryes 
- Embeddings of Label Components for Sequence Labeling: A Case Study of Fine-grained Named Entity Recognition - Takuma Kato, Kaori Abe, Hiroki Ouchi, Shumpei Miyawaki, Jun Suzuki and Kentaro Inui 
Data augmentation
- AdvAug: Robust Adversarial Augmentation for Neural Machine Translation - Yong Cheng, Lu Jiang, Wolfgang Macherey and Jacob Eisenstein 
- Conditional Augmentation for Aspect Term Extraction via Masked Sequence-to-Sequence Generation - Kun Li, Chengbo Chen, Xiaojun Quan, Qing Ling and Yan Song 
- Good-Enough Compositional Data Augmentation - Jacob Andreas - 由于语言任务中的某些模式具有通用性,为了让神经网络学习到这些通用性,从而提出这种增强方法,具体方法: 
- 分析数据集中的语言模式,即在同样的语言环境中出现的不同词句,这些不同字句就是需要被学习到的通用性,下面是一对例子。- She picks the wug up in Fresno.
- She puts the wug down in Tempe.
 
- 在这个例子中,粗体部分代表着同样的语言环境,则斜体部分则为需要学习到的通用性,在网络受到1的句子的时候,也需要具备推导出2中斜体部分内容的能力。
- Review-based Question Generation with Adaptive Instance Transfer and Augmentation - Qian Yu, Lidong Bing, Qiong Zhang, Wai Lam and Luo Si 
- Logic-Guided Data Augmentation and Regularization for Consistent Question Answering - Akari Asai and Hannaneh Hajishirzi 
- Parallel Data Augmentation for Formality Style Transfer - Yi Zhang, Tao Ge and Xu SUN 
- Syntactic Data Augmentation Increases Robustness to Inference Heuristics - Junghyun Min, R. Thomas McCoy, Dipanjan Das, Emily Pitler and Tal Linzen 
- Noise-Based Augmentation Techniques for Emotion Datasets: What do we Recommend? - Mimansa Jaiswal and Emily Mower Provost